
EE 492 Biweekly Report 12

3/29/21 – 4/12/21

Group Number: SD May 21-43

Project Title: Emergency! Need backup!

Client/Advisor: Collins Aerospace / Andrew Bolstad

Team Members / Role:

James Curtis / Meeting Scribe

Caroline Easley / Meeting Facilitator

Marcelo Abrantes / Engineer (Power Systems)

Michael Kuehn / Communications Director

Benjamin Welte / Project Documentation

Abbey Wilder / Test Engineer

Stepan Zelenin / Engineer (Communication Systems)

Period Summary:

The main task occupying the receiver and transmitter design teams during the past work period

was the finalization of the schematic and layout for the final PCB that will carry the radio circuit.

This entailed finishing the part selection for our project as well as the routing on the circuit card.

Regarding SNMP control of the radio, we successfully finished parametrizing the code to control

the local oscillator and resolved our previous issue with the amplitude and shape of the local

oscillator output by realizing that the oscillator’s output is a differential signal – after we

measured it as such, its output matched our expectations. We will still need to deploy the code to

control the local oscillator onto the new part that we ordered because the oscillator that we had

been testing does not cover the full frequency range that the radio needs to transmit and receive

at.

We also began integrating the SNMP user interface into the local network in the TLA which

presented several complications that were not present when it was being developed at one of our

team members’ homes. Deploying the SNMP code in the TLA required us to acquire IP

addresses for our Arduinos using DHCP, and we also needed to connect to the same router using

physical ethernet connections (previously the SNMP interface had worked over Wi-Fi, but the

network configuration in the TLA necessitated that the computer running MIB browser be

physically connected to the router like the Arduino).

In short, we believe that we have all of the pieces in place to begin testing our final product when

the PCB arrives. We have already verified the schematic for the radio via simulation and simply

need to confirm that the hardware works as expected with some final integration testing.

Past Period Accomplishments:

 Finalized parts selection for the PCB’s voltage regulators, VHF and UHF band filters,

and multiplexors – Marcelo

 Finished the PCB schematic and layout for the final product – Caroline, James, Michael,

Stepan, and Marcelo

 Finalized linear regulator selection to generate the final PCB’s 5V and 3.3V supply

voltages – Michael

 Deployed SNMP user interface on the local network in the TLA – Ben, Abbey

 Configured IP addresses for the Arduinos using DHCP protocol – Ben

 Finished parametrizing the code to program the local oscillator to output a square wave of

arbitrary frequency – Ben

 Redesigned mixers for the final PCB to better adhere to project requirements using pre-

input and post-output signal conditioning chain adjustments (this entailed adding resistors

for impedance matching and a ferrite bead for biasing via a balun center tap) – Stepan

 Finalized the BOM for all of the PCB’s parts – Caroline, Michael

 Ordered the BOM and PCB via the ETG – Michael

 Verified final schematic using SPICE simulations – Stepan

Pending Issues:

 Make SNMP user interface compile on Windows as well as on Mac OS – Ben, Abbey

 Solder new local oscillator to dev board and verify its operation – Everybody

 Test the final PCB when it arrives – Marcelo, Caroline, James, Michael, Stepan

Individual Contributions:

Name Individual Contributions Hours this week Hours cumulative

James C. Reviewed final PCB

layout

 Helped configure SNMP

on the LAN in the TLA

12 66

Caroline E. Reviewed PCB layout

and schematic

 Finalized BOM with the

PCB’s final parts

15 71

Marcelo A. Finalized PCB

schematic, layout, &

part selection (voltage

regulators, filters for

VHF/UHF Bands, and

multiplexors)

20 81

Michael K. Finalized PCB

schematic and part

selection (specifically

the 5V and 3.3V linear

regulators)

 Integrated voltage

regulators into the

schematic

24 78

 Finalized the PCB’s

filter design

 Finalized BOM and

ordered the final PCB &

parts list from ETG

Ben W. Finalized Arduino code

to program the local

oscillator

 Acquired IP addresses

for the Arduinos using

DHCP

 Resolved issues with the

shape and amplitude of

the old oscillator’s

output waveform

 Began transferring code

for the old oscillator to

the new oscillator

 Successfully deployed

SNMP user interface on

the TLA’s LAN

18 79

Abbey W. Successfully deployed

SNMP user interface on

the TLA’s LAN

12 69

Stepan Z. Redesigned mixer

biasing to better fulfill

project requirements

 Adjusted mixer pre-

input and post-output

signal conditioning

24 82

chain using impedance

matching with resistors

and a ferrite bead

 Finalized differential

audio-range filter

design.

 Performed concluding

tests of schematic design

in SPICE

 Finalized schematic &

layout for the final PCB

Plans for the Upcoming Period:

During the upcoming work period, we plan to begin testing our final PCB when it arrives.

Hopefully, we will be able to resolve any issues that we discover without ordering a new board;

otherwise, we will simply have to explain in our presentation why our product isn’t fully

functional and recommend fixes for future engineering teams to implement. We also need to

integrate our SNMP interface with the code to program the local oscillator now that both have

been successfully deployed in the TLA, and we need to ensure that the code for the local

oscillator works on the new part that we ordered from Silicon Labs because the local oscillator

that we ordered for testing doesn’t cover the full frequency range over which our radio needs to

send and receive.

Advisor Meeting Summary:

During our meetings with Dr. Bolstad, we discussed the difficulties we were experiencing while

integrating our SNMP interface with the local network in the TLA and finalizing the design of

our PCB. His main recommendation was to reserve lab space ahead of time to ensure that we

have the resources needed to finish the project before the deadline for our presentation. He also

recommended that we assemble a brief presentation to show to our client during our next

meeting with them in order to update them on our progress, so we began collecting images

associated with our work in order to present them to Collins on 4/13.

Appendix A: Images

schematic for low-pass differential audio range filter

audio filter’s frequency response (magnitude and phase, differential mode)

audio filter’s frequency response (magnitude and phase, common mode)

Final PCB Layout

Old local oscillator’s differential output (10 MHz)

Old local oscillator’s differential output (20 MHz)

Old local oscillator’s differential output (30 MHz)

Appendix B: Code

Header file for functions to program the local oscillator (LO.h):

#ifndef _LO_H

#define _LO_H

typedef unsigned long uint32_t;

/*

 * Gen_Params

 * - Description: function to generate the N1 and HS_DIV parameters given a certain frequency

 *

 * - Inputs: F_Params[] - the uninitialized array of Freq. parameters (F_Params[0] is N1, and
F_Params[1] is HS_DIV)

 *

 * - Outputs: nothing, but it fills the F_Params array

 *

 *

 * NOTES: 5.67 GHz > (F * HS_DIV * N1) > 4.86 GHz

 * valid values of N1: 1, 2, 4, 6, etc ...

 * valid values of HS_DIV: 4, 5, 6, 7, 9, 11

 */

void Gen_Params(int F_Params[], double Freq);

 /*

 * hardcode_test

 * - Description: test function to get LO behavior when reg values are hard-coded

 *

 * NOTE: register values are specific to the local oscillator used for initial testing

 */

void hardcode_test();

 /*

 * Reset_LO

 * - Description: reset the local oscillator to 10 MHz

 *

 * NOTE: register values are specific to the local oscillator used for initial testing

 */

void Reset_LO();

 /*

 * Read_LO_Config

 * - Description: read LO configuration registers for debugging

 */

void Read_LO_Config();

 /*

 * Write_LO_Values

 * - Description: Helper function to write the values of HS_DIV, N1, and RFREQ to the
appropriate LO registers

 *

 * - Inputs: N1_reg_val - the value for N1 to be written to LO registers 7 [4:0] and 8 [7:6]

 * HS_DIV_reg_val - the value for HS_DIV to be written to LO register 7 [7:5]

 * REFREQ_reg_val - the value for RFREQ to be writtent to LO registers 8 [4:0], 9,
10, 11, and 12

 * (this will need to be converted from a double to the actual reg value)

 */

void Write_LO_Values(int N1_reg_val, int HS_DIV_reg_val, uint32_t RFREQ_reg_upper_val,
uint32_t RFREQ_reg_lower_val);

/*

 * N1_Lookup

 * - Description: Helper function to convert the regular number used in the frequency
generation math

 * into the value that actually needs to be written to reg 7 [4:0] and reg 8 [7:6]

 *

 * Legal values are 1 and multiples of two. Illegal odd values are rouned up.

 * The value written to the register should be the desired divider minus one. Ex: if you

 * wanted N1 = 10, you would write 0b000_1001 (9 in decimal).

 *

 * - Inputs: N1_number - the regular number used in the frequency calculations

 * - Outputs: N1_reg_val - the value to be written to the LO registers corresponding to the
value used in the math

 */

uint32_t N1_Lookup(int N1_number);

/*

 * HS_DIV_Lookup

 * - Description: Helper function to convert the regular number used in the frequency
generation math

 * into the value that actually needs to be written to reg 7 [7:5]

 *

 * - Inputs: HS_DIV_number - the regular number used in the frequency calculations

 * - Outputs: HS_DIV_reg_val - the value to be written to the LO registers corresponding to
the value used in the math

 */

uint32_t HS_DIV_Lookup(int HS_DIV_number);

 /*

 * RFREQ_Lower_Lookup

 * - Description: Helper function to convert the decimal portion of the floating point RFREQ
value into the

 * lower half of the value that will be written to the LO registers

 *

 * - Inputs: RFREQ_number - the floating point number used in the frequency calculations

 * - Outputs: sum - the sum of all of the decimal point values after they've been multiplied

 * by 2^28

 *

 * NOTES:

 * As of 3/19/21, there is error introduced into the calculation (the lowest 3 hex characters of
RFREQ are inaccurate)

 * However, after recalculating the frequency using the new RFREQ value w/error introduced,
it doesn't seem like it will

 * have an appreciable effect on the result. Hopefully this is good enough.

 *

 */

uint32_t RFREQ_Lower_Lookup(double RFREQ_number);

/*

 * RFREQ_Upper_Lookup

 * - Description: Helper function to convert the integer portion of the floating point RFREQ
value into the

 * upper half of the value that will be written to the LO registers

 *

 * - Inputs: RFREQ_number - the floating point number used in the frequency calculations

 * - Outputs: RFREQ_upper_reg_val - the integer portion of RFREQ to be written to the
upper register

 */

uint32_t RFREQ_Upper_Lookup(double RFREQ_number);

#endif

